Search results for " differential geometry"

showing 10 items of 148 documents

Abel transforms with low regularity with applications to X-ray tomography on spherically symmetric manifolds

2017

We study ray transforms on spherically symmetric manifolds with a piecewise $C^{1,1}$ metric. Assuming the Herglotz condition, the X-ray transform is injective on the space of $L^2$ functions on such manifolds. We also prove injectivity results for broken ray transforms (with and without periodicity) on such manifolds with a $C^{1,1}$ metric. To make these problems tractable in low regularity, we introduce and study a class of generalized Abel transforms and study their properties. This low regularity setting is relevant for geophysical applications.

Abel transformsMathematics - Differential GeometryClass (set theory)Pure mathematicsApplied Mathematics010102 general mathematicsgeodesic x-ray tomographySpace (mathematics)01 natural sciencesInjective functionComputer Science ApplicationsTheoretical Computer Science010101 applied mathematicsDifferential Geometry (math.DG)geophysical imagingBroken ray tomographySignal ProcessingMetric (mathematics)PiecewiseFOS: MathematicsTomography0101 mathematicsspherical symmetryMathematical PhysicsMathematics
researchProduct

Segre and the Foundations of Geometry: From Complex Projective Geometry to Dual Numbers

2016

In 1886 Corrado Segre wrote to Felix Klein about his intention to study ‘geometrie projective pure’, completing and developing the work of von Staudt. He would continue this research project throughout the whole of his scientific life. In 1889, following a suggestion of Segre, Mario Pieri published his translation of the Geometrie der Lage, and from 1889 to 1890 Segre published four important papers, “Un nuovo campo di ricerche geometriche”, in which he completely developed complex projective geometry, considering new mathematical objects such as antiprojectivities and studying the Hermitian forms from a geometrical point of view with the related ‘hyperalgebraic varieties’. Segre developed …

AlgebraComplex projective spaceProjective spaceErlangen programProjective differential geometryFoundations of geometryPencil (mathematics)Synthetic geometryMathematicsProjective geometry
researchProduct

The Influence of H. Grassmann on Italian Projective N-Dimensional Geometry

1996

On May 29, 1883, Corrado Segre took his doctorate in Turin (Torino), under Enrico D’Ovidio’s guidance. His thesis (Segre 1884a,b) was published one year later in the Journal of the local Academy of Science, and after a short time it became a fundamental starting point for the development of Italian projective n-dimensional geometry.

CombinatoricsPure mathematicsLinear spacePoint (geometry)Real coordinate spaceDevelopment (differential geometry)Projective differential geometryProjective testMathematicsProjective geometry
researchProduct

Projective mappings between projective lattice geometries

1995

The concept of projective lattice geometry generalizes the classical synthetic concept of projective geometry, including projective geometry of modules.

Discrete mathematicsProjective harmonic conjugatePure mathematicsCollineationDuality (projective geometry)Projective spaceGeometry and TopologyProjective planeProjective differential geometryPencil (mathematics)Projective geometryMathematicsJournal of Geometry
researchProduct

Projective Geometry on Modular Lattices

1995

Publisher Summary This chapter focuses on projective geometry on modular lattices. Incidence and Order are basic concepts for a foundation of modern synthetic geometry. These concepts describe the relative location or containment of geometric objects and have led to different lines of geometry, an incidence-geometric and a lattice-theoretic one. Modularity is one of the fundamental properties of classical projective geometry. It makes projections into join-preserving mappings and yields perspectivities to be (interval) isomorphisms. It is therefore natural that order-theoretic generalizations of projective geometry are based on modular lattices and even more, the theory of modular lattices …

Discrete mathematicsPure mathematicsCollineationHigh Energy Physics::LatticeDuality (projective geometry)Ordered geometryProjective spaceErlangen programProjective differential geometryMap of latticesMathematicsProjective geometry
researchProduct

A unified approach to projective lattice geometries

1992

The interest in pursuing projective geometry on modules has led to several lattice theoretic generalizations of the classical synthetic concept of projective geometry on vector spaces.

Discrete mathematicsPure mathematicsProjective harmonic conjugateCollineationDuality (projective geometry)Projective spaceErlangen programGeometry and TopologyProjective differential geometryPencil (mathematics)MathematicsProjective geometryGeometriae Dedicata
researchProduct

Symbolic integration of hyperexponential 1-forms

2019

Let $H$ be a hyperexponential function in $n$ variables $x=(x_1,\dots,x_n)$ with coefficients in a field $\mathbb{K}$, $[\mathbb{K}:\mathbb{Q}] <\infty$, and $\omega$ a rational differential $1$-form. Assume that $H\omega$ is closed and $H$ transcendental. We prove using Schanuel conjecture that there exist a univariate function $f$ and multivariate rational functions $F,R$ such that $\int H\omega= f(F(x))+H(x)R(x)$. We present an algorithm to compute this decomposition. This allows us to present an algorithm to construct a basis of the cohomology of differential $1$-forms with coefficients in $H\mathbb{K}[x,1/(SD)]$ for a given $H$, $D$ being the denominator of $dH/H$ and $S\in\mathbb{K}[x…

FOS: Computer and information sciencesMathematics - Differential GeometryComputer Science - Symbolic ComputationPure mathematicsMathematics::Commutative Algebra010102 general mathematics68W30Field (mathematics)010103 numerical & computational mathematicsFunction (mathematics)[MATH] Mathematics [math]Symbolic Computation (cs.SC)16. Peace & justiceFunctional decomposition01 natural sciencesDifferential Geometry (math.DG)FOS: MathematicsComputer Science::Symbolic Computation0101 mathematics[MATH]Mathematics [math]Symbolic integrationMathematics
researchProduct

The Poincar\'e-Cartan Form in Superfield Theory

2018

An intrinsic description of the Hamilton-Cartan formalism for first-order Berezinian variational problems determined by a submersion of supermanifolds is given. This is achieved by studying the associated higher-order graded variational problem through the Poincar\'e-Cartan form. Noether theorem and examples from superfield theory and supermechanics are also discussed.

Hamiltonian mechanicsHigh Energy Physics - TheoryMathematics - Differential GeometryPhysics and Astronomy (miscellaneous)BerezinianSuperfieldsymbols.namesakeFormalism (philosophy of mathematics)58E30 46S60 58A20 58J70Poincaré conjectureSupermanifoldsymbolsMathematics::Differential GeometryNoether's theoremMathematical PhysicsMathematical physicsMathematics
researchProduct

$n$-harmonic coordinates and the regularity of conformal mappings

2014

This article studies the smoothness of conformal mappings between two Riemannian manifolds whose metric tensors have limited regularity. We show that any bi-Lipschitz conformal mapping or $1$-quasiregular mapping between two manifolds with $C^r$ metric tensors ($r &gt; 1$) is a $C^{r+1}$ conformal (local) diffeomorphism. This result was proved in [12, 27, 33], but we give a new proof of this fact. The proof is based on $n$-harmonic coordinates, a generalization of the standard harmonic coordinates that is particularly suited to studying conformal mappings. We establish the existence of a $p$-harmonic coordinate system for $1 &lt; p &lt; \infty$ on any Riemannian manifold.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsSmoothness (probability theory)GeneralizationGeneral MathematicsCoordinate systemta111conformal mappingsConformal map53A30 (Primary) 35J60 35B65 (Secondary)Riemannian manifoldMathematics - Analysis of PDEsDifferential Geometry (math.DG)Metric (mathematics)FOS: MathematicsDiffeomorphismMathematics::Differential GeometryMathematicsAnalysis of PDEs (math.AP)
researchProduct

Conformality and $Q$-harmonicity in sub-Riemannian manifolds

2016

We prove the equivalence of several natural notions of conformal maps between sub-Riemannian manifolds. Our main contribution is in the setting of those manifolds that support a suitable regularity theory for subelliptic $p$-Laplacian operators. For such manifolds we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth. In particular, we prove that contact manifolds support the suitable regularity. The main new technical tools are a sub-Riemannian version of p-harmonic coordinates and a technique of propagation of regularity from horizontal layers.

Harmonic coordinatesMathematics - Differential GeometryPure mathematicsWork (thermodynamics)morphism propertyGeneral Mathematicsconformal transformationBoundary (topology)Conformal map01 natural sciencesdifferentiaaligeometriaMathematics - Analysis of PDEsMathematics - Metric GeometryLiouville TheoremRegularity for p-harmonic functionSubelliptic PDE0103 physical sciencesFOS: MathematicsMathematics (all)0101 mathematicspopp measureMathematicsosittaisdifferentiaaliyhtälötsubelliptic PDESmoothnessQuasi-conformal mapApplied MathematicsHarmonic coordinates; Liouville Theorem; Quasi-conformal maps; Regularity for p-harmonic functions; Sub-Riemannian geometry; Subelliptic PDE; Mathematics (all); Applied Mathematicsta111Harmonic coordinate010102 general mathematics53C17 35H20 58C25Metric Geometry (math.MG)16. Peace & justiceregularity for p-harmonic functionsSub-Riemannian geometrysub-Riemannian geometryDifferential Geometry (math.DG)quasi-conformal mapsRegularity for p-harmonic functionsharmonic coordinates010307 mathematical physicsMathematics::Differential GeometrymonistotLiouville theoremAnalysis of PDEs (math.AP)
researchProduct